Burst kinetics and redox transformations of the active site manganese ion in oxalate oxidase: implications for the catalytic mechanism.

نویسندگان

  • Mei M Whittaker
  • Heng-Yen Pan
  • Erik T Yukl
  • James W Whittaker
چکیده

Oxalate oxidase (EC 1.2.3.4) catalyzes the oxidative cleavage of oxalate to carbon dioxide and hydrogen peroxide. In this study, unusual nonstoichiometric burst kinetics of the steady state reaction were observed and analyzed in detail, revealing that a reversible inactivation process occurs during turnover, associated with a slow isomerization of the substrate complex. We have investigated the underlying molecular mechanism of this kinetic behavior by preparing recombinant barley oxalate oxidase in three distinct oxidation states (Mn(II), Mn(III), and Mn(IV)) and producing a nonglycosylated variant for detailed biochemical and spectroscopic characterization. Surprisingly, the fully reduced Mn(II) form, which represents the majority of the as-isolated native enzyme, lacks oxalate oxidase activity, but the activity is restored by oxidation of the metal center to either Mn(III) or Mn(IV) forms. All three oxidation states appear to interconvert under turnover conditions, and the steady state activity of the enzyme is determined by a balance between activation and inactivation processes. In O(2)-saturated buffer, a turnover-based redox modification of the enzyme forms a novel superoxidized mononuclear Mn(IV) biological complex. An oxalate activation role for the catalytic metal ion is proposed based on these results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The identity of the active site of oxalate decarboxylase and the importance of the stability of active-site lid conformations.

Oxalate decarboxylase (EC 4.1.1.2) catalyses the conversion of oxalate into carbon dioxide and formate. It requires manganese and, uniquely, dioxygen for catalysis. It forms a homohexamer and each subunit contains two similar, but distinct, manganese sites termed sites 1 and 2. There is kinetic evidence that only site 1 is catalytically active and that site 2 is purely structural. However, the ...

متن کامل

Oxalate decarboxylase and oxalate oxidase activities can be interchanged with a specificity switch of up to 282,000 by mutating an active site lid.

Oxalate decarboxylases and oxalate oxidases are members of the cupin superfamily of proteins that have many common features: a manganese ion with a common ligand set, the substrate oxalate, and dioxygen (as either a unique cofactor or a substrate). We have hypothesized that these enzymes share common catalytic steps that diverge when a carboxylate radical intermediate becomes protonated. The Ba...

متن کامل

DISSOLUTION KINETICS OF MANGANESE DIOXIDE ORE IN SULFURIC ACID IN THE PRESENCE OF FERROUS ION

Abstract: In this paper, kinetics of reductive leaching of manganese dioxide ore by ferrous ion in sulfuric acid media has been examined. Experimental results show that increasing temperature from 20 to 60 °C and decreasing ore particle size from −16+20 to −60+100 mesh considerably enhance both the dissolution rate and efficiency. Molar ratios of Fe2+/MnO2 and H2SO4/MnO2 in excess to the st...

متن کامل

Substrate Binding Mode and Molecular Basis of a Specificity Switch in Oxalate Decarboxylase

Oxalate decarboxylase (OxDC) catalyzes the conversion of oxalate into formate and carbon dioxide in a remarkable reaction that requires manganese and dioxygen. Previous studies have shown that replacing an active-site loop segment Ser(161)-Glu(162)-Asn(163)-Ser(164) in the N-terminal domain of OxDC with the cognate residues Asp(161)-Ala(162)-Ser-(163)-Asn(164) of an evolutionarily related, Mn-d...

متن کامل

Cyclic voltammetry of bulk and nano manganese sulfate with Doxorubicin using glassy Carbon electrode

The cyclic voltammetry of both bulk manganese sulfate (BMS) and nano manganese sulfate (NMS) were studied using 0.1M KCl supporting electrolyte and glassy carbon working electrode. The redox behavior for both bulk (BMS) and MnSO4 (NMS) sulfate was studied voltammetrically in presence and absence of Doxorubicin (DR) using three electrodes system, silver- silver chloride (Ag/AgCl), pla...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 282 10  شماره 

صفحات  -

تاریخ انتشار 2007